
DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

UNIT-3

SYLLABUS:
Conceptual Data Modeling: High-Level Conceptual Data Models for Database Design, A

Sample Database Application, Entity Types, Entity Sets, Attributes and Keys, Relationship

Types, Relationship Sets, Roles, and Structural Constraints, Weak Entity Types, Refining the

ER Design, ER Diagrams, Naming Conventions and Design Issues, Relationship Types of

Degree Higher Than Two. Relational Database Design Using ER-to-Relational Mapping.

1. Conceptual Data Modeling
Introduction

Conceptual modeling is a very important phase in designing a successful database
application. Entity-Relationship (ER) model is a popular high-level conceptual data model.

This model and its variations are frequently used for the conceptual design of database
applications, and many database design tools employ its concepts.

1.1 High-Level Conceptual Data Models for Database Design

Figure 3.1: A simplified diagram to illustrate the main phases of database design.

V.RASHMI (Assistant Professor) PVPSIT IT 1

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

The first step shown is requirements collection and analysis. During this step, the database

designers interview prospective database users to understand and document their data

requirements The result of this step is a concisely written set of users requirements. These

requirements should be specified in as a detailed and complete form as possible. . In parallel

with specifying the data requirements, it is useful to specify the known functional

requirements of the application. These consist of the user defined operations (or transactions)

that will be applied to the database, including both retrievals and updates.

Once the requirements have been collected and analyzed, the next step is to create a conceptual

schema for the database, using a high-level conceptual data model. This step is called conceptual

design. The conceptual schema is a concise description of the data requirements of the users and

includes detailed descriptions of the entity types, relationships, and constraints; these are

expressed using the concepts provided by the high-level data model.

The next step in database design is the actual implementation of the database, using a

commercial DBMS. Most current commercial DBMSs use an implementation data model

such as the relational or the object-relational database model so the conceptual schema is

transformed from the high-level data model into the implementation data model. This step is

called logical design or data model mapping; its result is a database schema in the

implementation data model of the DBMS.

The last step is the physical design phase, during which the internal storage structures, file

organizations, indexes, access paths, and physical design parameters for the database files are

specified. In parallel with these activities, application programs are designed and implemented as

database transactions corresponding to the high level transaction specifications.

2.2 Entity Types, Entity Sets, Attributes and Keys

The ER model describes data as entities, relationships, and attributes.

2.2.1 Entities and Attributes

Entity: A thing in the real world with an independent existence. An entity may be an object with

a physical existence (for example, a particular person, car, house, or employee) or it may be an

object with a conceptual existence (for instance, a company, a job, or a university course).

Types of DBMS Entities:

The following are the types of entities in DBMS –

1) Strong Entity
2) Weak Entity

1) Strong Entity:
The strong entity has a primary key. Weak entities are dependent on strong entity. Its

existence is not dependent on any other entity.
Strong Entity is represented by a single rectangle.

V.RASHMI (Assistant Professor) PVPSIT IT 2

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

2) Weak Entity:

The weak entity in DBMS do not have a primary key and are dependent on the parent
entity. It mainly depends on other entities.

Example of Entity in DBMS:

Let us see an example −

<Professor>

Professor_ID Professor_Name Professor_City Professor_Salary

P01 Tom Sydney $7000

P02 David Brisbane $4500

P03 Mark Perth $5000

Here, Professor_Name, Professor _Address and Professor _Salary are
attributes. Professor_ID is the primary key

Professor is a strong entity here, and the primary key is Professor_ID.

However, another entity is Professor_Dependents, which is our Weak Entity.

Attributes: Particular properties that describe entity. For example, an EMPLOYEE entity

may be described by the Attributes:. For example, an EMPLOYEE entity maybe described by

the employee’s name, age, address, salary and job.

V.RASHMI (Assistant Professor) PVPSIT IT 3

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

Figure: Two entities, EMPLOYEE e1, and COMPANY c1, and their attributes

Types of attributes:
1) Composite versus Simple (Atomic) Attributes
2) Single-valued versus multivalued
3) Stored versus derived
4) NULL values
5) Complex attributes

1. Composite versus Simple (Atomic) Attributes

Composite Attributes can be divided into smaller subparts, which represent more basic

attributes with independent meanings. For example, the Address attribute of the EMPLOYEE

entity can be subdivided into Street address, City, State, and Zip.

Composite attributes can form a hierarchy. For example, Street address can be further

subdivided into three simple component attributes: Number, Street, and Apartment number.

The value of a composite attribute is the concatenation of the values of its component simple

attributes.

Figure: A hierarchy of composite attributes.

Attributes that are not divisible are called simple or atomic attributes. Example SSN of an

employee.

V.RASHMI (Assistant Professor) PVPSIT IT 4

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

2. Single-Valued versus Multivalued Attributes

Attributes that have a single value for a particular entity are called single-valued. For

example, Age is a single-valued attribute of a person.

Attributes that can have a set of values for a particular entity are called Multivalued Attributes.

For example Colors attribute for a car, or a College_degrees attribute for a person. A multivalued

attribute may have lower and upper bounds to constrain the number of values allowed for each

individual entity. For example, the Colors attribute of a car may be restricted to have between one

and three values, if we assume that a car can have three colors at most.

3. Stored versus Derived Attributes

An attribute, which cannot be derived from other attribute are called stored attribute. For

example, Birth_Date of an employee Attributes derived from other stored attribute are called

derived attribute. For example age of an employee can be determined from the current

(today’s) date and Date of Birth.

4. Null Value Attribute (Optional Attribute)
In some cases, a particular entity may not have an applicable value for an attribute. For

example, the Apartment_number attribute of an address applies only to addresses that are in

apartment buildings and not to other types of residences, such as single-family homes.

Similarly, a College_degrees attribute applies only to people with college degrees. For such

situations, a special value called NULL is created. An address of a single-family home would

have NULL for its Apartment_number attribute, and a person with no college degree would

have NULL for College_degrees. NULL can also be used if we do not know the value of an

attribute for a particular entity.
5. Complex Attributes
If an attribute for an entity, is built using composite and multivalued attributes, then these

attributes are called complex attributes. For example, a person can have more than one

residence and each residence can have multiple phones, an address phone for a person entity

can be specified as:

{ Address phone (phone {(Area Code, Phone Number)},

Address (Sector Address (Sector Number, House Number), City, State, Pin))

}

Here {} are used to enclose multivalued attributes and () are used to enclose composite

attributes with comma separating individual attributes

2.2.2 Entity Types, Entity Sets, Keys, and Value Sets

Entity Types: An entity type defines a collection (or set) of entities that have the same

attributes. Each entity type in the database is described by its name and attributes. For

example, a company employing hundreds of employees may want to store similar

information concerning each of the employees. These employee entities share the same

attributes, but each entity has its own value(s) for each attribute.

V.RASHMI (Assistant Professor) PVPSIT IT 5

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

Entity Sets: The collection of all entities of a particular entity type in the database at any

point in time is called an entity set; the entity set is usually referred to using the same name

as the entity type. For example, EMPLOYEE refers to both a type of entity as well as the

current set of all employee entities in the database.

Figure: Two entity types, EMPLOYEE and COMPANY, and some member entities of each.

An entity type describes the schema or intension for a set of entities that share the same

structure. The collection of entities of a particular entity type is grouped into an entity set,

which is also called the extension of the entity type.

An entity type is represented in ER diagrams a rectangular box enclosing the entity type

name. Attribute names are enclosed in ovals and are attached to their entity type by straight

lines. Composite attributes are attached to their component attributes by straight lines.

Multivalued attributes are displayed in double ovals.

Key Attributes of an Entity Type

An entity type usually has one or more attributes whose values are distinct for each individual

entity in the entity set. Such an attribute is called a key attribute, and its values can be used to

identify each entity uniquely. For example, the Name attribute is a key of the COMPANY

entity because no two companies are allowed to have the same name. In ER diagrammatic

notation, each key attribute has its name underlined inside the oval. Some entity types have

more than one key attribute. For example, each of the Vehicle_id and Registration attributes

of the entity type CAR is a key in its own right.

Example: The CAR entity type with two key attributes, Registration and Vehicle_id.

V.RASHMI (Assistant Professor) PVPSIT IT 6

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

Figure: ER diagram notation

Value Sets (Domains) of Attributes

Entity set with three entities.

Each simple attribute of an entity type is associated with a value set (or domain of values),

which specifies the set of values that may be assigned to that attribute for each individual

entity. For example, if the range of ages allowed for employees is between 16 and 70, we can

specify the value set of the Age attribute of EMPLOYEE to be the set of integer numbers

between 16 and 70.

Value sets are not displayed in ER diagrams, and are specified using the basic data types

available in most programming languages, such as integer, string, Boolean, float, enumerated

type, subrange, and so on.

Mathematically, an attribute A of entity set E whose value set is V can be defined as a function from E to the power set P(V) of
V: A: E → P(V).We refer to the value of attribute A for entity e as A(e).A NULL value is represented by the empty set.

3.3 A Sample Database Application

Miniworld: COMPANY database keeps track of a company’s employees, departments, and

projects.

➢ After the requirements collection and analysis phase, the database designers provide the

following description of the miniworld:

• The company is organized into departments.
• Each department has a unique name, a unique number, and a particular employee who

manages the department. We keep track of the start date when that employee began

managing the department.
• A department may have several locations.
• A department controls a number of projects, each of which has a unique name, a

unique number, and a single location.
• We store each employee’s name, social security number, address, salary, gender and

birth date.
• An employee is assigned to one department, but may work on several projects, which

are not necessarily controlled by the same department.

V.RASHMI (Assistant Professor) PVPSIT IT 7

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

• We keep track of the current number of hours per week that an employee works on

each project. We also keep track of the direct supervisor of each employee (who is

another employee).
• We want to keep track of the dependents of each employee for instance purpose. We

keep each dependent’s first name, gender, birth date and relationship of employee.

Figure: Preliminary design of entity types for the COMPANY database.

Some of the shown attributes will be refined into relationships.

3.4 Relationship Types

3.4.1 Relationship Types, Relationship Sets, Roles, and Structural Constraints

There are several implicit relationships among the various entity types. Whenever an attribute

of one entity type refers to another entity type, some relationship exists. For example

• The attribute Manager of DEPARTMENT refers to an employee who manages the
department.

• The attribute Controlling department of PROJECT refers to the department that
controls the project.

• The attribute Supervisor of EMPLOYEE refers to another employee -the one who
supervises this employee.

• The attribute Department of EMPLOYEE refers to the department for which the
employee works.

V.RASHMI (Assistant Professor) PVPSIT IT 8

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

In the ER model, these references should not be represented as attributes but as relationships.

3.4.2 Relationship Types, Sets, and Instances

A relationship type R among n entity types E1, E2, ..., En defines a set of associations or a

relationship set among entities from these entity types. Entity types and Entity sets, a

Relationship type and its corresponding Relationship set are usually referred to by the same

name, R.

Mathematically, the relationship set R is a set of relationship instances r i , where each ri associates

n individual entities (e1, e2, ..., en), and each entity ei in ri is a member of entity set Ej

, . Each of the entity types E1, E2, ..., En is said to participate in the relationship type R.

similarly, each of the individual entities e1, e2, ..., en is said to participate in the relationship

instance ri = (e1, e2, ..., en)

Informally, each relationship instance ri in R is an association of entities, where the

association includes exactly one entity from each participating entity type. For example,

consider a relationship type WORKS_FOR between the two entity types EMPLOYEE and

DEPARTMENT, which associates each employee with the department for which the

employee works in the corresponding entity set. Each relationship instance in the relationship

set WORKS_FOR associates one EMPLOYEE entity and one DEPARTMENT entity.

Figure: Some instances in the WORKS_FOR relationship set, which represents a

relationship type WORKS_FOR between EMPLOYEE and DEPARTMENT.

employes e1 , e3, and e6 work for department d1. employs e2 and e4 work for department d2

and employees e5 and e7 work for department d3.

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which are

connected by straight lines to the rectangular boxes representing the participating entity types.

The relationship name is displayed in the diamond-shaped box.

A relationship is represented by diamond shape in ER diagram, it shows the relationship

among entities. There are four types of relationships:
1. One to One

V.RASHMI (Assistant Professor) PVPSIT IT 9

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

2. One to Many
3. Many to One
4. Many to Many

1. One to One Relationship

When a single instance of an entity is associated with a single instance of another entity then

it is called one to one relationship. For example, a person has only one passport and a
passport is given to one person.

2. One to Many Relationship

When a single instance of an entity is associated with more than one instances of another
entity then it is called one to many relationship. For example – a customer can place many
orders but a order cannot be placed by many customers.

3. Many to One Relationship

When more than one instances of an entity is associated with a single instance of another
entity then it is called many to one relationship. For example – many students can study in a
single college but a student cannot study in many colleges at the same time.

4. Many to Many Relationship

When more than one instances of an entity is associated with more than one instances of
another entity then it is called many to many relationship. For example, a can be assigned to

many projects and a project can be assigned to many students.

V.RASHMI (Assistant Professor) PVPSIT IT 10

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

Total Participation of an Entity set

EXAMPLE:

A relational database collects different types of data sets that use tables, records, and

columns. It is used to create a well-defined relationship between database tables so that

relational databases can be easily stored. For example of relational databases such as

Microsoft SQL Server, Oracle Database, MYSQL, etc.

There are some important parameters of the relational database:

• It is based on a relational model (Data in tables).
• Each row in the table with a unique id, key.
• Columns of the table hold attributes of data.

Following are the different types of relational database tables.

1) One to One relationship
2) One to many or many to one relationship
3) Many to many relationships

1) One to One Relationship (1:1): It is used to create a relationship between two tables

in which a single row of the first table can only be related to one and only one records

V.RASHMI (Assistant Professor) PVPSIT IT 11

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

of a second table. Similarly, the row of a second table can also be related to anyone

row of the first table.
Following is the example to show a relational database, as shown below.

2) One to Many Relationship: It is used to create a relationship between two tables.

Any single rows of the first table can be related to one or more rows of the second

tables, but the rows of second tables can only relate to the only row in the first table.

It is also known as a many to one relationship.
Representation of One to Many relational databases:

Representation of many to one relational database:

3) Many to Many Relationship: It is many to many relationships that create a relationship

between two tables. Each record of the first table can relate to any records (or no records)

in the second table. Similarly, each record of the second table can also relate to more than

one record of the first table. It is also represented an N:N relationship.
For example, there are many people involved in each project, and every person can

involve more than one project.

V.RASHMI (Assistant Professor) PVPSIT IT 12

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

Difference between a database and a relational database:

Advantages of relational databases:

1) Simple Model: The simplest model of the relational database does not require any

complex structure or query to process the databases. It has a simple architectural

process as compared to a hierarchical database structure. Its simple architecture can

be handled with simple SQL queries to access and design the relational database.
2) Data Accuracy: Relational databases can have multiples tables related to each other

through primary and foreign keys. There are fewer chances for duplication of data

fields. Therefore the accuracy of data in relational database tables is greater than in

any other database system.

V.RASHMI (Assistant Professor) PVPSIT IT 13

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

3) Easy to access Data: The data can be easily accessed from the relational database,

and it does not follow any pattern or way to access the data. One can access any data

from a database table using SQL queries. Each table in the associated database is

joined through any relational queries such as join and conditional descriptions to

concatenate all tables to get the required data.
4) Security: It sets a limit that allows specific users to use relational data in RDBMS.
5) Collaborate: It allows multiple users to access the same database at a time.

3.4.3 Relationship Degree, Role Names, and Recursive Relationships

Degree of a Relationship Set

The number of entity sets that participate in a relationship set is termed as the degree of that

relationship set. Thus,

Degree of a relationship set = Number of entity sets participating in a relationship set

Degree of a Relationship Type

The degree of a relationship type is the number of participating entity types. A relationship

type of degree two is called binary, and one of degree three is called ternary an example of

a binary relationship WORKS_FOR and ternary relationship is SUPPLY

Figure: Some relationship instances in the SUPPLY ternary relationship set.

Each relationship instance ri associates three entities a supplier s, a part p and a project j

whenever s supplies part p to project j.

Relationships as Attributes

It is sometimes convenient to think of a binary relationship type in terms of attributes.

Consider the WORKS_FOR relationship type. One can think of an attribute called

Department of the EMPLOYEE entity type, where the value of Department for each

EMPLOYEE entity is a reference to the DEPARTMENT entity for which that employee

works. This concept of representing relationship types as attributes is used in a class of data

models called functional data models.

V.RASHMI (Assistant Professor) PVPSIT IT 14

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

In relational databases, foreign keys are a type of reference attribute used to represent

relationships

Role Names and Recursive Relationships

Each entity type that participates in a relationship type plays a particular role in the relationship.

The role name signifies the role that a participating entity from the entity type plays in each

relationship instance, and helps to explain what the relationship means. For example, in the

WORKS_FOR relationship type, EMPLOYEE plays the role of employee or worker and

DEPARTMENT plays the role of department or employer.

Role names are not technically necessary in relationship types where all the participating

entity types are distinct, since each participating entity type name can be used as the role

name. However, in some cases the same entity type participates more than once in a

relationship type in different roles.

In such cases the role name becomes essential for distinguishing the meaning of the role that

each participating entity plays. Such relationship types are called recursive relationships.

Example of recursive relationships: SUPERVISION relationship type

The SUPERVISION relationship type relates an employee to a supervisor, where both

employee and supervisor entities are members of the same EMPLOYEE entity set. Hence,

the EMPLOYEE entity type participates twice in SUPERVISION: once in the role of

supervisor (or boss), and once in the role of supervisee (or subordinate). Each relationship

instance ri in SUPERVISION associates two employee entities ej and ek , one of which plays

the role of supervisor and the other the role of supervisee.

Figure: A recursive relationship SUPERVISION between EMPLOYEE in the supervisor

role (1) and EMPLOYEE in the subordinate role (2)

V.RASHMI (Assistant Professor) PVPSIT IT 15

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

3.4.4 Constraints on Binary Relationship Types
Relationship types usually have certain constraints that limit the possible combinations of entities

that may participate in the corresponding relationship set. These constraints are determined from

the miniworld situation that the relationships represent. For example, if the company has a rule

that each employee must work for exactly one department, then we would like to describe this

constraint in the schema. Two main types of binary relationship constraints:

1) Cardinality ratio
2) Participation.

1) Cardinality Ratios for Binary Relationships

The cardinality ratio for a binary relationship specifies the maximum number of relationship

instances that an entity can participate in. For example, in the WORKS_FOR binary

relationship type, DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that

each department can be related to any number of employees, but an employee can be related

to (work for) only one department. The possible cardinality ratios for binary relationship

types are 1:1, 1:N, N:1, and M:N.

Types of Cardinality :
There can be 4 types of cardinality –

1) One-to-one (1:1) –

When one entity in each entity set takes part at most once in the relationship, the cardinality

is one-to-one.
2) One-to-many (1: N) –
If entities in the first entity set take part in the relationship set at most once and entities in the

second entity set take part many times (at least twice), the cardinality is said to be one-to-many.

3) Many-to-one (N:1) –

If entities in the first entity set take part in the relationship set many times (at least twice),

while entities in the second entity set take part at most once, the cardinality is said to be

many-to-one.
4) Many-to-many (N: N) –

The cardinality is said to be many to many if entities in both the entity sets take part many

times (at least twice) in the relationship set.

V.RASHMI (Assistant Professor) PVPSIT IT 16

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

Example of a 1:1 binary relationship

• MANAGES which relates a department entity to the employee who manages that
department.

• This represents the miniworld constraints that at any point in time an employee can
manage one department only and a department can have one manager only.

Example of a M:N binary relationship

• The relationship type WORKS_ON is of cardinality ratio M:N, because the mini-

world rule is that an employee can work on several projects and a project can have

several employees.

V.RASHMI (Assistant Professor) PVPSIT IT 17

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

• Cardinality ratios for binary relationships are represented on ER diagrams by
displaying 1, M, and N on the diamonds

There are numbers (represented by M and N) written above the lines which connect

relationships and entities. These are called cardinality ratios. These represent the

maximum number of entities that can be associated with each other through

relationship, R.

2) Participation Constraints and Existence Dependencies

The participation constraint specifies whether the existence of an entity depends on its being

related to another entity via the relationship type. This constraint specifies the minimum

number of relationship instances that each entity can participate in, and is sometimes called

the minimum cardinality constraint. There are two types of participation constraints:

1) Total
2) Partial

1) Total participation

If a company policy states that every employee must work for a department, then an employee

entity can exist only if it participates in at least one WORKS_FOR relationship Instance. Thus,

the participation of EMPLOYEE in WORKS_FOR is called total participation, meaning that

every entity in the total set of employee entities must be related to a department entity via

WORKS_FOR. Total participation is also called existence dependency

V.RASHMI (Assistant Professor) PVPSIT IT 18

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

2) Partial participation

We do not expect every employee to manage a department .So the participation of EMPLOYEE

in the MANAGES relationship type is partial, meaning that some or part of the set of employee

entities are related to some department entity via MANAGES, but not necessarily all.

In ER diagrams, total participation is displayed as a double line connecting the participating

entity type to the relationship, whereas partial participation is represented by a single line.

cardinality ratio + participation constraints = structural constraints of a relationship type.

3.4.5 Attributes of Relationship Types

Relationship types can also have attributes, similar to those of entity types. For example, to

record the number of hours per week that an employee works on a particular project, we can

include an attribute Hours for the WORKS_ON relationship type. Another example is to

include the date on which a manager started managing a department via an attribute

Start_date for the MANAGES relationship type.

Attributes of 1:1 or 1:N relationship types can be migrated to one of the participating entity

types. For a 1:N relationship type, a relationship attribute can be migrated only to the entity

type on the N-side of the relationship. For M:N relationship types, some attributes may be

determined by the combination of participating entities in a relationship instance, not by any

single entity. Such attributes must be specified as relationship attributes.

4.1 Relationship Sets:

‘Enrolled in’ is a relationship that exists between entities Student and Course.

A relationship set is a set of relationships of same type.

Example-

Set representation of above ER diagram is-

V.RASHMI (Assistant Professor) PVPSIT IT 19

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

4.2 Types of Relationship Sets-

On the basis of degree of a relationship set, a relationship set can be classified into the

following types-

1) Unary relationship set
2) Binary relationship set
3) Ternary relationship set
4) N-ary relationship set

1. Unary Relationship Set-

Unary relationship set is a relationship set where only one entity set participates in a
relationship set.

Example-

One person is married to only one person

2. Binary Relationship Set-

Binary relationship set is a relationship set where two entity sets participate in a relationship

set.

V.RASHMI (Assistant Professor) PVPSIT IT 20

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

Example-

Student is enrolled in a Course

3. Ternary Relationship Set-

Ternary relationship set is a relationship set where three entity sets participate in a

relationship set.

Example-

4. N-ary Relationship Set-

N-ary relationship set is a relationship set where ‘n’ entity sets participate in a relationship set.

5.1 Roles and Structural Constraints

Structural Constraints are also called Structural properties of a database management

system (DBMS). Cardinality Ratios and Participation Constraints taken together are

called Structural Constraints. The name constraints refer to the fact that such limitations

must be imposed on the data, for the DBMS system to be consistent with the requirements.

The Structural constraints are represented by Min-Max notation. This is a pair of numbers(m,
n) that appear on the connecting line between the entities and their relationships. The minimum

number of times an entity can appear in a relation is represented by m whereas, the maximum

time it is available is denoted by n. If m is 0 it signifies that the entity is participating in the

V.RASHMI (Assistant Professor) PVPSIT IT 21

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

relation partially, whereas, if m is either greater than or equal to 1, it denotes total
participation of the entity.
Note –
Number of times an entity participates in a relationship is same as the number appearance of
the entity in the tuples.

5.2 Weak Entity Types

Entity types that do not have key attributes of their own are called weak entity types. Entities

belonging to a weak entity type are identified by being related to specific entities from

another entity type in combination with one of their attribute values. We call this other entity

type the identifying or owner entity type. We call the relationship type that relates a weak

entity type to its owner the identifying relationship of the weak entity type.

Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep track of

the dependents of each employee via a 1: N relationship. In our example, the attributes of

DEPENDENT are Name, Birth_ date, gender, and Relationship (to the employee). Two

dependents of two distinct employees may, by chance, have the same values for Name,

Birth_date, gender, and Relationship, but they are still distinct entities. They are identified as

distinct entities only after determining the particular employee entity to which each dependent is

related. Each employee entity is said to own the dependent entities that are related to it.

A weak entity type always has a total participation constraint (existence dependency) with

respect to its identifying relationship because a weak entity cannot be identified without an

owner entity. A weak entity type normally has a partial key, which is the attribute that can

uniquely identify weak entities that are related to the same owner entity. In our example, if

we assume that no two dependents of the same employee ever have the same first name, the

attribute Name of DEPENDENT is the partial key.

In ER diagrams, both a weak entity type and its identifying relationship are distinguished by

surrounding their boxes and diamonds with double lines. The partial key attribute is

underlined with a dashed or dotted line.

5.3 Refining the ER Design

Refining the ER Design for the COMPANY Database

In our example, we specify the following relationship types:

• MANAGES, a 1:1 relationship type between EMPLOYEE and DEPARTMENT.

EMPLOYEE participation is partial. DEPARTMENT participation is not clear from

the requirements. We question the users, who say that a department must have a

manager at all times, which implies total participation. The attribute Start_date is

assigned to this relationship type.
• WORKS_FOR, a 1:N relationship type between DEPARTMENT and EMPLOYEE.

Both participations are total.
• CONTROLS, a 1:N relationship type between DEPARTMENT and PROJECT. The

participation of PROJECT is total, whereas that of DEPARTMENT is determined to be

V.RASHMI (Assistant Professor) PVPSIT IT 22

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

partial, after consultation with the users indicates that some departments may control

no projects.

• SUPERVISION, a 1:N relationship type between EMPLOYEE (in the supervi-sor

role) and EMPLOYEE (in the supervisee role). Both participations are determined to

be partial, after the users indicate that not every employee is a supervisor and not

every employee has a supervisor.
• WORKS_ON, determined to be an M:N relationship type with attribute Hours, after

the users indicate that a project can have several employees working on it. Both

participations are determined to be total.
• DEPENDENTS_OF, a 1:N relationship type between EMPLOYEE and DEPENDENT,

which is also the identifying relationship for the weak entity type DEPENDENT. The

participation of EMPLOYEE is partial, whereas that of DEPENDENT is total.

5.4 ER Diagrams, Naming Conventions and Design Issues

V.RASHMI (Assistant Professor) PVPSIT IT 23

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

Proper Naming of Schema Constructs

Choose names that convey, as much as possible, the meanings attached to the different

constructs in the schema.

• Use singular names for entity types, rather than plural ones, because the entity type
name applies to each individual entity belonging to that entity type.

• In ER diagrams, entity type and relationship type names are uppercase letters, attribute

names have their initial letter capitalized, and role names are lowercase letters.
• As a general practice, given a narrative description of the database requirements, the

nouns appearing in the narrative tend to give rise to entity type names, and the verbs

tend to indicate names of relationship types. Attribute names generally arise from

additional nouns that describe the nouns corresponding to entity types.
• Another naming consideration involves choosing binary relationship names to make

the ER diagram of the schema readable from left to right and from top to bottom.

5.4.1 Design Choices for ER Conceptual Design

In general, the schema design process should be considered an iterative refinement process,

where an initial design is created and then iteratively refined until the most suitable design is

reached. Some of the refinements that are often used include the following:

• A concept may be first modeled as an attribute and then refined into a relationship

because it is determined that the attribute is a reference to another entity type. It is

often the case that a pair of such attributes that are inverses of one another are refined

into a binary relationship.
• Similarly, an attribute that exists in several entity types may be elevated or promoted to

an independent entity type. For example, suppose that several entity types in a

UNIVERSITY database, such as STUDENT, INSTRUCTOR, and COURSE, each has an

attribute Department in the initial design; the designer may then choose to create an entity

type DEPARTMENT with a single attribute Dept_name and relate it to the three entity

types (STUDENT, INSTRUCTOR, and COURSE) via appropriate relationships.
• An inverse refinement to the previous case may be applied for example, if an entity

type DEPARTMENT exists in the initial design with a single attribute Dept_name

and is related to only one other entity type, STUDENT. In this case, DEPARTMENT

may be reduced or demoted to an attribute of STUDENT.

V.RASHMI (Assistant Professor) PVPSIT IT 24

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

3.6.4 Alternative Notations for ER Diagrams

There are many alternative diagrammatic notations for displaying ER diagrams. One

alternative ER notation for specifying structural constraints on relationships, which replaces

the cardinality ratio (1:1, 1:N, M:N) and single/double line notation for participation

constraints. This notation involves associating a pair of integer numbers (min, max) with each

participation of an entity type E in a relationship type R where 0 ≤ min ≤ max and max ≥ 1.

The numbers mean that for each entity e in E, e must participate in at least min and at most

max relationship instances in R at any point in time. In this method, min = 0 implies partial

participation, whereas min > 0 implies total participation.

Figure: ER diagram for Company Database

V.RASHMI (Assistant Professor) PVPSIT IT 25

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

Figure: ER diagram for Company Database (using alternative notation)

5.5 Relationship Types of Degree Higher Than Two

5.5.1 Choosing between Binary and Ternary (or Higher-Degree) Relationships

A relationship type R of degree n will have n edges in an ER diagram, one connecting R to

each participating entity type.

V.RASHMI (Assistant Professor) PVPSIT IT 26

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

Fig: The SUPPLY relationship

Figure shows the ER diagram notation for a ternary relationship. SUPPLY is a set of

relationship instances (s, j, p), where s is a SUPPLIER who is currently supplying a PART p

to a PROJECT j.

Fig: ER diagram for three binary relationship and SUPPLIES

Figure shows an ER diagram for three binary relationship types CAN_SUPPLY, USES, and

SUPPLIES. CAN_SUPPLY between SUPPLIER and PART, includes an instance (s, p)

whenever supplier s can supply part p (to any project). USES between PROJECT and PART,

includes an instance (j , p) whenever project j uses part p. SUPPLIES between SUPPLIER

and PROJECT, includes an instance (s, j) whenever supplier s supplies some part to project j.

Some database design tools are based on variations of the ER model that permit only binary

relationships. In this case, a ternary relationship such as SUPPLY must be represented as a

weak entity type, with no partial key and with three identifying relationships.

V.RASHMI (Assistant Professor) PVPSIT IT 27

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

The three participating entity types SUPPLIER, PART, and PROJECT are together the owner

entity types. Hence, an entity in the weak entity type is identified by the combination of its

three owner entities from SUPPLIER, PART, and PROJECT.

5.5.2 Constraints on Ternary (or Higher-Degree) Relationships
There are two notations for specifying structural constraints on n-ary relationships.

1) based on the cardinality ratio notation of binary relationships displayed
- 1, M, or N is specified on each participation arc (both M and N symbols stand for

many or any number)
2) based on the (min, max) notation

- specifies that each entity is related to at least min and at most max relationship

instances in the relationship set

5.6 Relational Database Design Using ER-to-Relational Mapping.

ER-to-Relational Mapping Algorithm

Step 1: Mapping of Regular Entity Types.

Step 2: Mapping of Weak Entity Types.

Step 3: Mapping of Binary 1:1 Relation Types.

Step 4: Mapping of Binary 1:N Relationship Types.

Step 5: Mapping of Binary M:N Relationship Types.

Step 6: Mapping of Multivalued attributes.

Step 7: Mapping of N-ary Relationship Types.

Step 1: Mapping of Regular Entity Types. For each regular (strong) entity type E in the ER

schema, create a relation R that includes all the simple attributes of E. Choose one of the key

attributes of E as the primary key for R. If the chosen key of E is composite, the set of simple

attributes that form it will together form the primary key of R.

Example: We create the relations EMPLOYEE, DEPARTMENT, and PROJECT in the

relational schema corresponding to the regular entities in the ER diagram. SSN, DNUMBER,
V.RASHMI (Assistant Professor) PVPSIT IT 28

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

and PNUMBER are the primary keys for the relations EMPLOYEE, DEPARTMENT, and

PROJECT as shown. The ER conceptual schema diagram for the COMPANY database.

V.RASHMI (Assistant Professor) PVPSIT IT 29

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

Result of mapping the COMPANY ER schema into a relational schema.

Step 2: Mapping of Weak Entity Types For each weak entity type W in the ER schema with

owner entity type E, create a relation R & include all simple attributes (or simple components

of composite attributes) of W as attributes of R. Also, include as foreign key attributes of R

the primary key attribute(s) of the relation(s) that correspond to the owner entity type(s).The

primary key of R is the combination of the primary key(s) of the owner(s) and the partial key

of the weak entity type W, if any.

Example: Create the relation DEPENDENT in this step to correspond to the weak entity type

DEPENDENT. Include the primary key SSN of the EMPLOYEE relation as a foreign key

attribute of DEPENDENT (renamed to ESSN). The primary key of the DEPENDENT

relation is the combination {ESSN, DEPENDENT_NAME} because DEPENDENT_NAME

is the partial key of DEPENDENT.

Step 3: Mapping of Binary 1:1 Relation Types For each binary 1:1 relationship type R in

the ER schema, identify the relations S and T that correspond to the entity types participating

in R. There are three possible approaches:

1) Foreign Key approach: Choose one of the relations-say S-and include a foreign key in S

the primary key of T. It is better to choose an entity type with total participation in R in the

role of S.

Example: 1:1 relation MANAGES is mapped by choosing the participating entity type

DEPARTMENT to serve in the role of S, because its participation in the MANAGES

relationship type is total.

V.RASHMI (Assistant Professor) PVPSIT IT 30

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

2) Merged relation option: An alternate mapping of a 1:1 relationship type is possible by

merging the two entity types and the relationship into a single relation. This may be

appropriate when both participations are total.

3) Cross-reference or relationship relation option: The third alternative is to set up a third

relation R for the purpose of cross-referencing the primary keys of the two relations S and T

representing the entity types.

Step 4: Mapping of Binary 1:N Relationship Types. For each regular binary 1:N

relationship type R, identify the relation S that represent the participating entity type at the N-

side of the relationship type. Include as foreign key in S the primary key of the relation T that

represents the other entity type participating in R. Include any simple attributes of the 1:N

relation type as attributes of S.

Example: 1:N relationship types WORKS_FOR, CONTROLS, and SUPERVISION in the

figure. For WORKS_FOR we include the primary key DNUMBER of the DEPARTMENT

relation as foreign key in the EMPLOYEE relation and call it DNO.

Step 5: Mapping of Binary M:N Relationship Types. For each regular binary M:N

relationship type R, create a new relation S to represent R. Include as foreign key attributes in

S the primary keys of the relations that represent the participating entity types; their

combination will form the primary key of S. Also include any simple attributes of the M:N

relationship type (or simple components of composite attributes) as attributes of S.

Example: The M:N relationship type WORKS_ON from the ER diagram is mapped by

creating a relation WORKS_ON in the relational database schema. The primary keys of the

PROJECT and EMPLOYEE relations are included as foreign keys in WORKS_ON and

renamed PNO and ESSN, respectively. Attribute HOURS in WORKS_ON represents the

HOURS attribute of the relation type. The primary key of the WORKS_ON relation is the

combination of the foreign key attributes {ESSN, PNO}.

Step 6: Mapping of Multivalued attributes. For each multivalued attribute A, create a new

relation R. This relation R will include an attribute corresponding to A, plus the primary key

attribute K-as a foreign key in R-of the relation that represents the entity type of relationship

type that has A as an attribute. The primary key of R is the combination of A and K. If the

multivalued attribute is composite, we include its simple components.

Example: The relation DEPT_LOCATIONS is created. The attribute DLOCATION

represents the multivalued attribute LOCATIONS of DEPARTMENT, while DNUMBER-as

foreign key-represents the primary key of the DEPARTMENT relation. The primary key of R

is the combination of {DNUMBER, DLOCATION}.

Step 7: Mapping of N-ary Relationship Types. For each n-ary relationship type R, where

n>2, create a new relationship S to represent R. Include as foreign key attributes in S the

primary keys of the relations that represent the participating entity types. Also include any

V.RASHMI (Assistant Professor) PVPSIT IT 31

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

simple attributes of the n-ary relationship type (or simple components of composite

attributes) as attributes of S.

Example: The relationship type SUPPY in the ER on the next slide. This can be mapped to

the relation SUPPLY shown in the relational schema, whose primary key is the combination

of the three foreign keys {SNAME, PARTNO, PROJNAME}

Ternary relationship types. (a) The SUPPLY

relationship. Mapping the n-ary relationship type SUPPLY from Figure

V.RASHMI (Assistant Professor) PVPSIT IT 32

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-3

Summary of Mapping constructs and constraints

Comparision between ER Model and Relational Models

V.RASHMI (Assistant Professor) PVPSIT IT 33

